Evolution of Water Budget and Precipitation Efficiency of Mesoscale Convective Systems associated with Southwesterly Monsoon Flows over the South China Sea

Ming-Jen Yang Pacific Science Association The 7th WMO International Workshop on Monsoon (IWM-7) hosted by India Meteorological Department, Ministry of Earth Science, India 22-26 March 2022

Motivation:

The abundant **moisture transport** along the **Southwesterly Monsoon Flow** frequently produces **heavy rainfall** and **severe flooding** over the East Asia. Thus, an improved understanding and better forecast of the moisture transport is needed.

Scientific Questions:

1) How does **water vapor transport** along the Southwesterly Monsoon Flows across the South China Sea change with the **increase/decrease** of **low-level water vapor** and **wind speed**?

2) Does **wind convergence** or **water vapor advection** play a more important role in the change of **horizontal vapor flux convergence** associated with the Southwesterly Monsoon Flows?

WRF model configuration

• ARW-WRF v3.9

- Simulation period
 - 00Z 25 Aug 18Z 28 Aug 2015 (90h)
- Spatial grid size
 - 27/9/3-km on the triply-nested grid
 - 55η levels
- IC/BC
 - ECMWF ERA-Interim (0.75 degree)
- Parameterization scheme
 - Microphysics: Morrison two-moment
 - Longwave radiation: RRTM
 - Shortwave radiation: Dudhia
 - PBL: YSU
 - Cumulus: Grell 3D (Domain 1)
- Sensitivity experiments on IC & BC:
 - W10/D10 (RH: ±10% @ Surface 700 hPa)
 - F10/S10 (Speed ±10% @ Surface 700 hPa)

3-h Accumulated Rainfall (mm) From **CMORPH** Global Precipitation Analysis (09–12 UTC 27 August 2015)

0.25 degree

IWV: integrated water vapor

$$IWV = \frac{1}{g} \int_{sfc}^{200mb} q_v dp$$

IMT: integrated mass transport

$$IMT = \frac{1}{g} \int_{sfc}^{200mb} \vec{U}dp$$

IVT: integrated water vapor transport

$$VT = \frac{1}{g} \int_{sfc}^{200mb} q_v \vec{U} dp$$

Reference: Zhu and Newell (1998) Ralph, Neiman, and Rotunno (2005) Mundhenk, Barnes, and Maloney (2016)

3-h Accumulated Rainfall (mm)
From WRF CTL Simulation
(09–12 UTC 27 August 2015)
27-km grid

W10 Experiment: RH+10%

D10 Experiment: RH-10%

System Total Evolution along Monsoon Flows

Relative Change wrt. CTL

- 1) 10% increase in RH can produce 20% increase in rainfall.
- 2) 10% decrease in RH can produce40% decrease in rainfall.
- 3) 10% increase or decrease in wind speed produce has minor change in rainfall

Water vapor budget: q_v

 $Tend_v = HFC_v + VFC_v + Div_v + Diff_v + PBL_v - Cond + Evap + Resd_v$

Hydrometeors budget: $q_h = q_c + q_r + q_i + q_s + q_g$

 $Tend_h = HFC_h + VFC_h + Div_h + Diff_h + PBL_h + Cond - Evap + P + Resd_h$

Reference: Braun (2006; JAS) Yang et al. (2011; MWR) Huang et al. (2014; JAS)

			W	W10		D10		F10		S10		
		CTL		W	W10		D10		va10		vd10	
	Cond (10 ¹² kg)	8.0)9	8.57		4.69		7.68		6.4	19	
		WV	HY									
Total condensation	Cond	-100.00	100.00	-100.00	100.00	-100.00	100.00	-100.00	100.00	-100.00	100.00	
Total evaporation	Evap	43.76	-43.76	43.96	-43.96	49.53	-49.53	43.08	-43.08	45.44	-45.44	
Horizontal flux convergence	HFC	48.30	0.05	42.63	0.03	37.68	1.10	50.55	-0.15	47.19	0.09	
Vertical flux convergence	VFC	0.01	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.01	0.00	
Divergence	Div	1.90	0.43	1.76	0.35	1.49	0.43	1.89	0.39	1.73	0.41	
Diffusion	Diff	0.00	-0.01	0.00	0.00	-0.01	-0.01	0.00	0.00	0.00	0.01	
PBL	PBL	7.44	0.00	7.25	0.00	10.81	0.00	8.41	0.00	9.62	0.00	
Tendency	Tend	-0.41	1.92	-6.27	0.53	-1.78	1.15	2.14	1.68	2.40	1.43	
Residuals	Resd	-1.82	-2.50	-1.88	-0.99	-1.29	-1.81	-1.80	-2.15	-1.59	-1.97	
Precipitation flux	Р		-54.21		-55.43		-50.18		-55.01		-53.10	

Large-Scale Precipitation Efficiency (Sui et al, 2007; Huang et al. 2014; Xu et al, 2017)

$$LSPE = \frac{P}{\sum_{i=1}^{4} sgn(Q_i)Q_i}$$

$$Q_i = (Q_{WVT}, Q_{WVF}, Q_{WVE}, Q_{CM})$$

$$\begin{cases}
Q_{WVT} = [-\partial q_v/\partial t] & \text{local water vapor change} \\
Q_{WVF} = [-\nabla \cdot (q_v \vec{U})] & \text{water vapor convergence} \\
Q_{CM} = [-\partial q_t/\partial t] + [-\nabla \cdot (q_t \vec{U})] & \text{local hydrometeors change and convergence}
\end{cases}$$

surface evaporation rate

Cloud-Microphysics Precipitation Efficiency (Sui et al, 2007; Huang et al, 2014; Xu et al, 2017) $CMPE = \frac{P}{Cond + sgn(Q_{CM})Q_{CM}}$

$$\begin{array}{l} \textbf{Condensation}_{Ratio} CR = \frac{Cond_{l}}{Cond + sgn(Q_{CM})Q_{CM}} \rightarrow \textbf{Liquid-phase condensation} \\ \textbf{Deposition}_{Ratio} DR = \frac{Cond_{s}}{Cond + sgn(Q_{CM})Q_{CM}} \rightarrow \textbf{Ice-phase deposition} \\ \textbf{Evaporation}_{Ratio} ER = \frac{Evap_{r}}{Cond + sgn(Q_{CM})Q_{CM}} \rightarrow \textbf{Raindrop evaporation} \\ \textbf{Huang et al. 2014} \end{array}$$

Quasi-Lagrangian Change of Water vapor budget within MCS

Quasi-Lagrangian Change of Microphysics Ratios within MCS

Relative change of Sensitivity Experiment wrt. CTL

	IWV	IMT	IVT	HFC	Р
W10	15%	15%	↑20%	↑15%	120%
F10	_	15%	15%	1≪1%	1<5%
S10	—	↓5%	↓5%	↓5%	↓5%
D10	↓5%	↓15%	↓20%	↓40%	↓40%

Conclusions:

1) The integrated water vapor transport (IVT) and integrated mass transport (IMT) within the SW monsoon flow over the SCS **are more (less) sensitive to water vapor (wind speed**); a 10% decrease of low-level RH may lead to 15% decrease of IMT, 20% decrease of IVT, and 40% decrease of total precipitation (P).

2) Water vapor in the boundary layer plays a more important role in determining horizontal flux convergence (HFC) and resultant precipitation (P) rather than the horizontal wind speed.

3) Along the SW monsoon flow, the horizontal moisture flux convergence (**HFC**) is mainly determined by the **wind convergence**; however, compared to wind convergence, water vapor advection has the **minor but opposite** contribution to the HFC.

4) Following the movement of a targeted MCS, its precipitation efficiency (PE) is increased about 10% while encountering Taiwan topography from ocean (LSPE: 10% \rightarrow 20%; CMPE: 30% \rightarrow 40%).

Field Experiment:

Taiwan Area Heavy rain Observation and Prediction Experiment (TAHOPE) in May- August 2022

